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k& ABSTRACT

—" The equations of motion of compressible viscous and heat-conductive
fluids are investigated for initial boundary value problems on the half space
and on the exterior domain of any bounded region. The global solution in time
is proved to exist uniquely and app;oach the stationary state as t + =,

provided the prescribed initial data and the external force are sufficiently

small, _
}'\
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SIGNIFICANCE AND EXPLANATION
' The smooth motion of compressible viscous and heat-conductive fluids is

described by a nonlinear system of five partial differential equations. The

In this paper we show

the particular case of the

and on the exterior domain

and the external force are

extends our previous works
the whole space and on the

a priori estimates for the

first mathematical question for such a system is the existence and uniqueness
of the solution for the initial and boundary value problem. Since the local
existence in time of the unique solution is known, the main problem is the

existence of the global solution.

in time and its decay to the stationary state as time tends to infinity for

the existence and uniqueness of a global solution

initial-boundary value problem on the half space

of any bounded region, provided the initial data
small. The analysis which uses the energy method
concerning the initial (boundary) value problems on
interior domain (MRC Report #2194, 2237); some new

domains considered here are required.
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INITIAL BOUNDARY VALUE PROBLEMS POR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura and Takaaki Nishida

§$1. INTRODUCTION

The motion of viscous compreasible fluids is described by the system of five equations
for the density §, the velocity u = (u'.uz,u3) and the temperature §6:

b

pt + (pu )x =0
3
i 34 1 1 i b ] k Gij i
(1.1 u, +uu, +=p == {(wu, +ul)+ua | I i=1,2,3,
t x ] x1 [} xj xi )S‘ xj

8 3 1
9+ujb $—y? =— (k0 ) ¢+ ¥},
t x x,'x
3 v %y 3%
where p is the pressure, U is the viscosity coefficient, W' is the second coefficient
of viscosity, « is the cosfficient of heat conduction, Sy is the specific heat at
constant volume, all of which are known functions of p and &, and Y is the

dissipation function:

vedwd s u¥)2 4 w2,
2 xs‘ xj xk

We consider the initial boundary value problem of (1.1) in the region t >0, xe &

The boundary condition is supposed

(1.2) u‘ -u|-o, 6| -e‘-'b, t>0,
n - n -

or

(1.3) -u' -0, -:—:"l --:—:| =0, t>0.
- F1v] -

"
N

The initial condition is given by

(1.4) (p,\:,a)(o,x) - (poouopeo)(l,: xefl.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,




The local existence theorem for the initial boundary value problem (1.1)-(1.4) is proved by

Tani [10] under full generality. Here we want to solve the problem (1.1)~(1.4) globally in

time under the following assumptions.

A.1. The domain Q is the half space li = {xe na, x, > 0} or an exterior domain of any

3

bounded region with smooth boundary. Here we note that the initial (-boundary) value

T TN A e e s

problems on the whole space and on the interior domain are solved globally in time in [6]),

"M rgh AT v PR

{7) ana [8].

A.2. W,¥',x,p and cy are smooth functions of p,0> 0, and u,K,cv,p,pp,pe> 0,

2
" e £ .
u 3Il>0

A.3. The external force f is given by the potential &(x) e H‘(m.

(1.5) ¢t - -, 1=123, =xea,

i

where and in what follows we use the Sobolev space

%

L k a a1 a3
H(R) = {fe Lz(ﬂ), D£f= (3 £/3x1 3x2 3x3 . lal = x} e Lz(m, 1 <k €2}

)1/2

R e e et e s e

L K,.,2
with the norm lfll = ( Z f ID £]“ax
k=0 Q

A.4. The initial data are smooth functions close to a constant state (-p,o ,-5), where

] ? and B (also appeared in (1.2)) are any positive constantns, i.e.,

- - 3
Py = Pe g, Oo-eeu(m and

0
(1.6)

1o, = P, uy, °o - 'él3 is small .

A.5. The compatibility condition on the initial and boundary data is satisfied as follows:

8 =9
%) an

1 1 b ko3 .
+ — {u (u +u ) + uu } - ¢ §
po po 0 (J,xj (),x1 0 (),xk xj‘an xilm 3

(1.7) -

8,(Pg)g O e
po(cv)o O,xj I>°(<:v)o

{(x © ) + ¥} -0 ,
Oo,xjxj Olm




where we used the notation Py = p(po,eo) etc. 1In the case of Neumann condition (1.3) for

§ we need necessary change of compatibility condition,
We use the following notations for the function spaces:
Co(ﬁ): Banach space of bounded céntinuous function on ﬁ,
@ = tre®®, oce®@, 1 <k <),
Cz(t1,t2:B) = {u(t) : t-times continuocusly differentiable function of
te [t1,t2] with values in a Banach space B, where the norm is given by

)
max  sup I(sz]ku(t.')la}.
o<k< t1 <t<t2
Lz(t1"z’3) - {u(t) s L, ~function of t € [t1,t2] with values in B, where the

t

2
norm is given by ([ lu(t,')igdt)

%

The stationary solution (p,u,8)(x) of (1.1)-(1.3) in a neighborhood of (3,0, in

2
1/2}.

Hz(m3 has the form (cf. lemma 2.1)

p(x) p_(n,8) - . .
(1.8) -Lr—dn+0(x)-0, u=0, 6=79.
b
We can state the main

Theorem 1.1. Under the assumptions A.1 ~ A.5 there exists a constant € > 0 such that

ir lp-B,uo,e-'é|+u|4<c,

0 0 3
then the initial boundary value problem (1.1)-(1.4) has a unique solution (p,u, 9)
globally in time and a unique stationary state (;.0,3) which satisfy

p-peco,mudan nclo,mua) .
(1.9)

w,8 - B e c®o,~u) nclio,mu’ () .
and
(1.10) 1p - Pu,0=-Be)| o +0 as t >,
()]
The theorem is proved by the energy method which is similar to [6], (7], [8], but it

requires the estimates valid in the half space and in the exterior domain. We note that

the solution decays as in (1.10), but the decay rate is not known, cf. [6], (7], (8). In




the following we only mention the arguments for the Dirichlet boundary condition (1.2),

because the Neumann boundary condition (1.3) for 6 can be treated similarly.
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§2. STATIONARY SOLUTION

Let us write the equations and conditions for the stationary solution (;,\‘;, 8

(2.1) (3’&'3)x =0,
3
"'j"i ~ ~ ~ ad ~j ~ ~Je 6"’
(2.2) pu'u. +p. + o = (plu +ul )+ wu ), =0, 1i=1,23,
xj x x xj x LS xj
m~j~ ~r j Py ~
(2.3) w8 + &u’ ~ (k8 ) ~-Y¥=po,
v xj L) xj xj xj

(2.4) ;' - :‘ =0, 3‘ - a‘| b ‘60 ; - -9 ’

n - n - -

where ; - p(;,‘s) etc. The stationary problem (2.1)-(2.4) has a unique solution as
Lesma 2.1. Under the assumptions A.1 ~ A.3 there exist positive constant € and C such
that it IOI" <e¢ £=3o0rd4, the problem (2.1)-(2.4) has a unigue solution (;(x),o,'é)
in a small neighborhood of (p,0,8) in (23 satisfying

(2.5) 15 - ‘-"z <ciel,, =3 or 4 respectively ,

where p(x) is determined by (1.8), i.e.,

5(x) p. (0,8
(2.6) -L;,'—- an+ #(x) =0

Proof. 8ince we consider a small neighborhood of (‘3.0,'6) in (Hz)a, by Sobolev's lemma

we may suppose |p - B[, ful, 18« ¥ < % min{p,9)}. Then we can estimate the equalities:

?p.(n®
J2.1) x f —LE'—-dndx-o ,
°
(2.7) [ (2.21* xalax = 0 ,

[ 12.3) x {§« Dax =0 ,
vhere [2.1], [2.2]" and (2.3] denote the terms on the left hand side of (2.1), (2.2)1 ana

5=




(2.3) respectively. Take the gum of (2.7) and integrate it by parts using the mean value
theores and lemma 4.1. We obtain the inequality:
~_ 2 ~ 2 ~ ~ ~
wut® + 1081° <clwpr + W1 + 18- +
c .

2

+ 18 - 3upmman? + 108e?) . :

Therefore if IDpI, l;l,l, 18 - 3!2 is small, we can conclude
(2.8) u=0, 6=0,

If we substitute (2.8) in (2.2), we have

which implies (2.6).

-6~




* 3. LOCAL AND GLOBAL EXISTENCE
Let us rewrite the problem (1.1), (1.2) by the change of variables

' (p,u,0)  (p + ;,u,a + 9 using (2.6) as follows:

s>‘__+ujox + (9+;)u1 +;xuj-0 ,
3 3 b
u: + uju: - - {u(ui + ui ) + u'uk G'U}x +
j p+p y N % 0N
(3.1) - _—
0
L S | ST Ll A VO
p+p X1 p+p X4 (p+ PIp (2, *
(0 + .é)p
g v ule, 4 ——L2y) kg )+
3 (p + p)cv J (p+ 9)cv b B |
(3.2) (u,e)| - (u,0)| =0 .
n ©
(3.3) (p'“'e)(OUX) - (Do'uo,eo)(x) .
Purther we rewrite the problem (3.1)=({3.3) as follows:
o o = 3 =3 _ .0
(3.4) Lu(o.u) A +ulp + puy £,
3 3
i i R Sl | ~A S i
(3.4) L (p,u,8) 2 u_ - uu - {(u+ p'hu + p,p +p,8 =g i=1,23,
t xjxj xixj 1 x1 2 x1
(3.4)% 14%u,8) 68 - k0 _ +pul =%,
t xjxj 3 x:j

(uro)l = (“l°)| =0,
n -
(3.5)
(Py,u,0)(0) = (Doruoleo) ’
where we denote the constant for the function 9 of p and O by g = g(p, B, and also

e Bp, u =u/p, k= E/BEV. | T BP/B' p, = 50/3 and p, = 'GBG/EV The terms on

7=

4




the right hand side of equations (3.4) are nonlinear -nd have the form:

£0p,0,0) = (5 - p - ;)uz - 5, W,
3 3 ’
fi(a.u,e) = -uju: + L - - ")“;i: < * :
b p+op 5
+(LL£—.'-;-;']\::X* 1~{ux(u +u1) ;
o+ P i5 e+ *30% 1
k i3 p P
(3.6) +u w8+ (p, - —E=)p + (p, - )
x 1 ~'"x 2 ~/x
b P+ p i

$ (), 1=,23,

(0 + 'S)pp(K,'é) 1
t‘(mu.e) = —njex + (—K-:-— - .:)ex x
3 e+ Pigy 3%5
(6 + .e)p
+ (o, - M e 8+ M.

(p+Peg ™3 (o+pley 3%y

Next we choose a constant Eg by use of Sobolev’s lemma gsuch that

Igl

< % min(p,®) for any g e H2, Igl_ <E. .
Y

0 2 0

Then the solution of (3.1)~(3.3) is sought in the set of functins X(0,™E) .for some

E € 'o' where for 0 € t1 < "2 < ®», we define i

X(t,,t,E) = {tp,u,0 :

3 2
pe C(tl;tzlﬂ ), Dpe Lz(t1,tzlﬂ |

2 2
pt e C(t1vt ) n Lz(t‘:C iRY) ,

2 2

“Ie GC(t,.t ’HS) ’

3.1 '
2;!! NH), Dl(yd e Lz(t‘,t

2

1 2
“:'ec e Cle e ) N Lz(t1,t2;l~l ) and Nt b)) < E} ,




where

Nit.,t) = sup  fpyu,8(e) 82 + o (e) 02 + 1o, 8 (e)0? +
172 3 t 2 t't 1
t, et
1 2
(3.8)
t
+12|n( 102 + 15 (8182 + 1D(u,0)(5) 1 + 1,0 (s)0%a
: 9.2 pt'Z u, l3 “t't 2s.

1

Here and in what follows we do not write & in ﬂl(ﬂ) and Lz(ﬁ).

We will obtain the global solution by a combination of a local existence theorem and
some a priori estimates for the solution in X, namely that for the norm N.
Proposition 3.1, (local existence)

Suppose the problem (3.1)-(3.3) has a unique solution (p,u,0 e x(o,h;zo) for some

h > 0 and consider the problem (3.1)-(3.3) for t » h. Then there exist positive

constants 1,6, and co(co/ 1+ c: <E;) independent of h such that if N(h,h),

181 < € the problem has a unique solution

4 0’
(p,u,0) € X(h,h + T3 C,N(h,h)) .

The proof is the same as that for the interior problem in (8] and is omitted. Although the
local existence theorem by Tani [10] is more general, we need it in the form of Proposition
3.1 to extend the solution globally in time by use of L, energy method.
Propc sition 3.2, (a priori estimates)

Suppose the problem (3.1)-(3.3) has a solution (p,u,0) e x(o,h;zo) for given
h > 0. Then there exiat positive constants c1 and C, (c1 < eo, e1c1 < 50) which are

independent of h such that if N(O,h), lN4 < € it holds

1
N(0O,h) < C1N(0,0) .

If Proposition 3.1 and 3.2 are known, the global existence of unique solution can be
proved as follows: Choose the initial data (po,uoeo) and the potential function ¢ so
small that it holds

N(0,0) < min{e € /c € /c,/ 1+ c2] ana 101, < .
Then Proposition 3.1 with h = 0 gives a local solution (p,u,0) @ x(o,tycoN(0,0)). Since

CON(O,O) <e

1 < co, Proposition 3.2 with h = T implies N{0,7) < C,N(O,D). Then




Proposition 3.1 with h = T implies the existence of solution

(P,u,0) € X(1,2GC N(T,T)), € x(0,2v:7/ 1 + cg N0, 7)) .

Hence, since 7 1 + cg N(O,T) <€ c1¢ 1+ Cg N(0,0) < €

gives N(0,2T1) <€ C‘N(0,0), and Proposition 3.1 with h = 2t gives

) Proposition 3.2 with h = 27

(p,u,0) e x(2'r,3ncou(2‘t,2'r)), e x(0,3t:7 1 + c: N(0,21)) .

Repetition of this process yields
Proposition 3.3. {(global existence)

There exist positive constants € and cC(e < Eo) such that if N(0,0), 181, < ¢,

4
then the initial boundary value problem (3.1)-(3.3) has a unique solution

(p,u,8) e x(0,%CN(0,0)) .

«10-
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§4. A PRIORI ESTIMATES
First we recall some inequalities of Sobolev type.
Lewma 4.1,
(i) Let Q be any domain with smooth boundary. It holds

1£1 o € CIE) 5 P 0 <0< 1/2,
) H(Q)
(4.1)

i < cIfl . 2<¢<p <6 .

£}
Lp(ﬂ) H‘(Q)

(ii) Let 2 be the whole space n?, the half space n:, or the exterior domain of
a bounded region with smooth boundary. It holds

(34 < cipgt .
Ls(ﬂ) Lzlﬂ)
(4.2)

] < cinfl

£1 ,
L,(0") L, (2

where §' is any bounded subregion of Q.
Proof. See for example [3], [4).

Next we note some estimates of elliptic system of equations for our domain, when we
reé&rd equation (3.4)1. i=1,.,.,4, as elliptic with respect to x variables, i.e.,

-~

i - P | i i

pu + (p+ u'h =u +pp +p 0O =~f, i=1,2,3,
xjxj xixj t 1 xi 2 x1
. - j - 4

(4.3) xax x = et + Pauy £,

i3 3

u = u] = 0| = 0| =0 .
n Ll an L

Lemma 4.2. Let {3 be the half gpace or any exterior domain. We have for k = 2,3

k

(4.4) forut < cliu f ., + (e, 000 _, + ey o, + i},
3

(4.5) ID"or < c{ie. s . + foul , + i£0 o + IDO1},

The first estimate is well known, e.g. {1]. The last L, norm is contained on the right
hand side becaugse of the unboundedness of our domain. The second one is given in [S]). It
contains the L, norm of the first derivative as the last term on the right hand side and

is stronger than that containing the L, nom of the function itself such as (4.4).




P

The last estimate for an elliptic system concerns Stokes equation in  which comes

from (3.4)%, 1 =0,...,4.

(4.6) -uui + p1°x - 91, i=1,2,3,

u' = a, ul =0 .
1] -

Lewma 4.3. For k = 2,3,4 it holds

2 x-1pz

12 ¢ c{mi? 2

k
(4.7) o' ul ey * 19t

+ 1D + 1a1? + tput?} P

k~2 712 an)

where the last term on “he right hand side is necessary in the case of exterior domain.

Proof. 1In the case of half space (I = R; lemma is proved by Solonnikov [9) and Cattabriga

[2), where the definition of the space Hk-”z(aﬂ) is also given. In the case of exterior

domains Finn (3] and Heywod (4] obtain lemma provided h = 0. Thus we only need a slight
improvement for h # 0. Let us extend the function h e H‘(ﬂ) to a function h e H‘(la)

with the estimate

thi < clhl .
1) um

Then we approximate h by l-l1 functions h, with compact support, i.e.,
hn > h in H‘(ls). as n * »,

Thus we can define the function

h_(y)
1 n
¢ (x) == f dy
n 5 RB Ix = yl
It is well known by use of Fourier transform
l020 ! <chh 1
" gt " gt md)
Thus we have
-12=




e — — A ATV 4 A1 B

2
o 1% 1 , Ipe b .. <cihh | .
n “1(m n Lzm ) n nt“s)

where ' is any bounded subdomain of § (cf. (4.2)). 8Since C is independent of n,

as the limit of n + », we have

IDz’l +» D¢ < chl 1 .

1]
5 (2 L,(ah) (@)
Now we can put
u-~9Ye=v and q-9+h/p13

which satisty
divvs=20

~/
-ubv + p,Vq = g
and reduces to the above case. In fact we have

2
N I, WO S WO foaly(m * M, j

H (Q)

and

tv| I = ~Ve} & 3/2 < clibgl 2 <cml 1 '

2 /2 an 5°/%(a0) m(a*) 2 ()

where the boundary of ' contains 3. |
Now we begin to obtain the energy estimate for solution of equation (3.4)1, 1
i= °l¢"l.l with (3.5),
, Lesma 4.4. We have for L =0 and 1
2 dp

t
nt(o.n.e)(:nz + [ wat,oe? + 13! 28 () 0%as
0

(24

{ (4.8)

t
< CIN:(D.u.ONO)Iz TR na:z°|2a.)
0




© otean ot o it

P P
Ao'f'_J'D(to-ujox)+u1f1+;2 ord ax ,
[ b 3
P P
(B °o_ 3 ii P2 4
(4.9) A, /- P UE - wlp ) tuf + b 8 f. dx ,
P b 3
gg = 3 - Y - o b
at S Pt =t "“xj'
We have also for k = 0 and 1
X 2 5 e 2
D3 (u,8)(t)8° + [ 135 '(p,u,8)(s)1°ds
t 0 t
(4.10) < C(lbat(u,ﬂ)w)lz + 1350001 % + 13foie) P

t
+ [ w0 ® + 135 - wIo 1% 4 1 e(er 1%an) .
0 t t xj t

Proof. Compute the integral

t P P
T2 ew® - v vt - b+ 2o - ehaxat = 0 .
0 25 Py
Integration by parts using the boundary condition gives
b J P t . “ e P, «
126 s v 2 fax s [ [uout? o ue wrd )7+ 2 dooZaxae
s Py 0 2 3 Py
t
1P 2 2 P2
2[3 po+|u°|+p8§dx+flodta

3 0
where A, 1is defined by (4.9). If we use the notation dp/dt in (4.9), we can obtain
(4.8), 2 =0 from this equality. The time derivative can be treated simjilarly, because

it has the same boundary conditions. Next compute the integral
¢ o .0 1,4 4 L4
| Jo.? - €% +uin? - Y + 6% - £5haxae = 0
Oﬁt t t

Integration by parts gives by use of Schwarz inequality

-t4-




flllDuI TR )(uJ 12 + ¢Ip8|? + p.'pu dx + %I f + |u':|2 + G:dxdt
*5 b} 0

R 2 a4 2 = 2 3
< J uipug I+ (u+ "'”“o,xj) + «Ipg |” + p1°o“o,xjd"

[~

t 2 ~ 2
+c [ ] Iptu,9(s)1° + |£f]“axat ,
0@

where £ = (fo - ujpx ,f‘,fz,t3,£4). If we use Schwarz inequality for the term pu: ;. we

obtain (4.,10), £ = o? The estimate (4.10), 2 = 1 is obtained similarly. 3

In the following we first treat the case of half space § = l: which is simpler to
explain the way of obtaining estimates than that for exterior domains treated later,

Since the tangential derivatives of the solution of (3.4) satisfy the same boundary
conditions (3.5), we can obtain the estimates for these similarly to the above lemma 4.4.
Let us denote the tangential derivatives by 3 = (8x ,ax )} and integrate the equality for

1 2
each k = 1,2,3 by use of integration by parts

e

Lol - %%+ Kt - ehut -0

?
Thus we have

Lemma 4.5. For k = 1,2,3

t
1350, ()12 + | tpa®u(s)1? + 12X gf (8) 1%as
0

(4.11)
t
< cOXo,w 12 + [ 152 + 155 e 4 1A, la8} ,
0
where
Py x .k, .0 3§
(4.12) A, = J = 3%p3%(£" - ulp, )ax for each k = 1,2,3 .
Qo xj

Then we have to obtain the estimates for the normal derivatives of solution. To do

that we use the following equations from (3.4).

£33 19

Py BT s T g -y W WA




dp Sed = g0
(dt)xa*mxx tx ’

33 3
(4.13)
u: - u&u3 - (u+ u')ui R T pzex -,
373 3 3
If we eliminate the term u: x from these, we have
373
!
, []

‘. 2t de) o, adape +HEW O O
: - at’/x 17x t 2 x - x
i 3 3 3 ) 3

(4.14)

+u(u:x +u: )+v'(ul Ou:) ’
11 272 1 2

where we note the second derivatives of u at the last two terms on the right hand side

contain one tangential derivative. Multiply (4.14) by Dx and (dp/dt)x respectively
3 3

and integrate them respectively. We obtain after integration by parts

. . .
JREY 2 s [ [ p6? axat
25 3 0 3

~ - t -~ -~
+ u' + u'
-Ilv_-.L 2 ax + | !&“'——_._"_(_u:px + 2u) Dx)pxdxdt

P
1 2p Orxy 0 2p 3 %3 XN

t -~
+f f{-u:-pzox +“(“)3tx + +u +ui Vlo +
o 3 17 272 173

]
+ (M— fo + fs)p dxdt
e M *3

Pyt 2 2. f
<32 [ [ ok axar + clmp(0)1® + [ 1By lde +
) X3 o 00

ft
+ Tu i
0 t

2 2

+ ip2ut® + 1wee + e + 1£30%s

and

-{f=

oL (PP oo AT~ )

A e ST




‘{ / 3“%-L {(‘;’E),s}zdxdt | O, &

Py . 2 S )
e=[p; ax+ [ [=(-u) o +ulp )p axat
2 0,x 0 2 "j xs x3 xj xa

t -~ - "
2y + p' dp 3 3 3 2

+[ (%), {~u; - p,8, + ulu +u +u +u )

o - at *J t 2 xa x'x1 xzxz x1 x3 xzx3

'
+ 2+ f: + !3)68dt

P 3

e A N P 2. 3.

LA~ oA U A TR e

3Ly (g (£8)2 axar + c{iwp(0)1? + [ n, (lae
20 0 3 0 ’

t
+ [ 1907+ 0o + i + e 4 e Paxae )
°

respectively. Thus we have obtained the following

e e i 45 A e 9 b

lemma 4.6. Por k + L = 0,1,2 it holds

t
1% 00en? + [ 13592 orar? + 19T (52)10) e i
; :

t
2 k+1 2 .2 2
< c{toptore?, *6{ 1 alour® + 1afu 0

2 0.2 2
+ 00,0 (8 v I e “‘x.z""} .

where
(4.16) n , s/ (), - z"a;pna}a“a;p' ax ,
[ 3 ,

and here the summation is not taken for k and &.

Proof. For k+ 2 =1 and 2 we differentiate the equation (4.14) by 3“3;' and multiply

e AT~ R T g YL o - Tt

it by 3*3;'”9 and 3"3:" %E respectively. Integration by parts gives (4.15) and (4.16)

in this case similarly to that for k= L = 0,

i

Last we use lemma 4.3 for Stokes equation (4.6) with u =0, where h and g
3

have the following explicit forms.




0 _ g
hef -oF
(4.17) J
L)
gi - -u: + L‘_:_P_ h - pzex + ti. i=1,2,3. _
[+ i i ;
Lemma 4.7. For k + £ = 0,1,2 we have i
Inzuakul . ID""akpl é
(4.18) ;
k dp 0 3
<cliud o+ 1 (50)0,,, e aE L e LN I i

Now we can combine the above lemmas 4.1-4.7 to obtain necessary a priori estimates. ‘

{
First we obtain the HZ version of nomm N(o,t), i.e., . F

2 2 2
10,u,0(t) 0, + tp (£) 17 + Mu ,B (£}l

t

2 2 2 d 2
: +,{ 1, (8),Dp(8) 05 + Tu_,0 (8)17 + ID(u,0)(s) 1} + L (o) 10as
(4.19)
<c{1p,u,00003 + eup (1 - wlp 12,1200)0%)
0<s<t 3
t 3 1
0,2 0.2 2 3 2
O O 7o T U O V3 i o Y ol S N F O B D M | las . ;
0 2 t ' X1 xep * X+ $=0 ot

It is proved by fifteen steps as follows:

(i) By lemma 4.4, 2L = 0, we have

t
10,u,6c182 + | 1D(u, 01 ()17 + 152 (o) P28
0

(4.20)

T A YR VPO AP SN P oA W 1 B

2. % .0 .2
<c{hp,u,B(0)1° + [ 1£ (8)1° + "‘o""} .
0

(i1) By lexma 4.4, k = 0, and (4.20) we have

2 t 2 :
1D(u,0) ()14 + [ 19, ,u,,0, (s)17as :
)]
(4.21)

2 2, a2
€ veeee + C{ID(0,0(0)1° + 1p(0)1° + [ 1f(s)0t°as} ,
0

-18=




where ..... means the terms already appeared on the right hand side of inequalities (4.20)-

(4.32), especially (4.20) for (4.21).

(iii) By lemma 4.4, L = 1, wve have

t
2 2 dp 2
1o ,u, .8 (£)1° + g ID(u,,8)(s))" + '[dt)t(')' ds

(4.22)
t
2 0 2
< c{lpt,ut,et(o)l + g I (s)1° + IA‘Idl} .
(iv) By lemma 4.2 for © and by (4.20)-(4.22) we have
2 2, (% .2 2 4,2 . (F .4, .2
(4.23) I0°0(e)1° + [ 1p*0(m)t%ds < couee + LU (RINE 4+ [ aE% () KFan) .
0 o
{v) We have the estimate of tangential derivatives of ¢ by lemma 4.5, k=1,
2, & 2 4py, 42
13p(e)1° + [ 103u(s)® + 13(35)(e) 1%as
0
(4.24)

¢
Covern t 0@ 4 c [ 1300 4 1g00) 0% 4 A las .
0

(vi) The estimate of normal derivative for p and %g. follows from lemma 4.6,

k+2=0 and from (4.24), (4.21) and (4.20)

t
2 2 ap 2
13,0(0)1° + g 12,p(8) 1% + 13, 3= (s)1°as

{4.25)
2. [~ .02 2
Cavoeo + {0, 00000° & [ 4£705 + 1£8° + (B, _{ds} .
3 0 1 0,0

(vii) Then we have the second derivative of u by lemma 4.2 for u and k= 2, and

by (4.19), (4.21), (4.22), (4.24), (4.25).

(4.26) 10%u(e) 12 € vueve + CEECEINZ .

«{9w

T T o At e S e e

DR s W st BRI . . .
4 ' P " e o . M&a\mr-‘m "
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(viii) Purther since %te e Lz(o,tm‘), we have by lemma 4.7, k + £ =0 and by

(4.21), (4.20), (4.24) and (4.25)

t t
(4.27) J wiuer® « o Pas < e+ [ 1002 4 ari’as
0 0

(ix) By lemma 4.2 for O, k = 3 and by (4.27), (4.21) and (4.22) we have

t t
(4.28) [ wleari?as < cooen v [ att(aridas .
0 0

{x) By lemma 4.5, k = 2 we have

t
o)t « [ wutas® + 137 L (a)i%as
0
(4.29)

t
<clidiomin? + [ 12 ? + 1) ? + 1ajlas) .
0

{xi) By lemma 4.6, k=1, £ =0 and by (4.29), (4.22) we have

t
2 2 a 2
129,p(¢)" +g 193,0(8)1° + 132, —th (3)1°as

2, (0,02 2
€ veee + c{133,0(0)1° + ({ 1 (a) 0+ 0] . “’1.0""} .

By Lemma 4.7, k=1, £ =0 and by (4.29), (4.30) and (4.22) we have

t | 4
(4.31) [ 10*2ue)? + wapts)?as < coe v [ 1)) ¢ age) an
0 0

(xiii) By lemma 4.6, k=0, 2 =1 and by (4.31), (4.22) we have

t t
2 2 2 2 2 dp 2 2
(4.32)  033p(¢)0 +£ 13]p(8) 17 + 13) 3T (s)17d8 < ..o0l ¢ c{lo(u)l2 +of iB, ,lds} .




e e

(xiv} By lesma 4.7, k=0, £ =1 and by (4.29), (4.30), (4.32) and (4.22) we have

t
(4.33) J wiue)1? + wipe(s)t?as < ..... .
0

(xv) Then by the equation (3.4)

t
2 2 o _ .3 6 _ 3 2
(4.30)  Tp ()03 +({ 1o (o) 1228 ¢ .oevn v 1 - w ple’ + ‘{ 1 - "xj"“#" )

Thus if we sum (4.20)-(4.34), we arrive at the HZ? energy estimate (4.19).
To elevate the differentiability once to obtain the estimate of norm N(0,t) we can
repeat the above argument beginning from lemma 4.4, k = 1 and by use of lemma 4.2,
k=3, lesma 4.5, kX =3, lemma 4.6, kX + £ =2 and lemsa 4.7, k + £ = 2, Therefore

we arrive at the estimate for N(0,t).

2 2 2 2
N(0,£)7 F Hp,u,0(e) Ny + Ip (€)65 + du 8 (v) U

t
2 2 2
+£ 19,,D0(8) 0, + lu .8 (s)1; + ID(u,0) (s) Va8

(4.35) < c{lo.u.emlg + sup (10 - wlo_ 183, 1000)
0<est 3

t
0 2 2 2 3 2 3 2
+£ 7 (5)85 + 12(a) 0] + I (s)1° + 1u pxj)tl + h pxjuz

4 2
+ xzo Al + mgp-o 8, plas} .

Last we have to show

-21=
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Lemma 4.8,
o 3 2 2 t 0, .2
sup {£ - uwp (snz,uun1} + [ e ()97 +
0<ast 3 ()}
o 3 2 2. .32 % %
(4.36) + e = uwlp ) ()15 + 1L (8)1° + IE(8) N + Ia | + 1B, ,lds
x, 't t 2 x_o“k -

2
< Cz(N(O,t) + IQI‘)N o,t) .

It is proved by use of lemma 4.1 and integration by parts. We show only the term A, and

omit the proof of the other terms which can be treated similarly. Let us recall (4.9) and

compute the following

tf o - ujpx yax| = |f o{(p - ol - cmj}x ax| = |f P {(s- P - mj}dxl
b] 3 h]

< et {(f 5 - »2uiax)"? + (f *lui?ax)"?}

< Ippl{ip - pt. lul. + Il lul_ }
L3 I.6 I..3 Ls

< ClpptiDul {181, + 1o} < C N(D,t)z{IN3 + N(O,0) } .

J ui{(—-"—.’- ;]ui <t oy ul ax|

p+p 3 e+ 9%y
. i i i, 1 i
' < J e (=R - w1 e (), v, lax
50+ 0 *5 P+ 3™y

< I—E— - up giout? ¢ i(—2) 1w moul
p+p p+p 33

<c N(O,t)z(lﬂ3 + N0, ) ).

The remaining terms in Ay can be treated in the same way as above.
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Finally let us turn to the case of exterior domains. In this case, since we cannot
generally designate a coordinate system all over fl the directions of which are consistent
with the normal and tangential directions on the boundary 9! as in the case of half
space, we have to modify the lemmas 4.5 through 4.7. To do that we shall separate the
estimates of the golution into that over the region away from the boundary 9% and that
near the boundary 3. Let xo(x) be any fixed cut-off function in C-(Q) such that
support x0 C Q and x0 2 1 outside of a bounded region fI'. Then we have the following
as the estimate on the region away from the boundary.

Lemma 4.9, For k = 1,2,3, it holds that
K 2 ok 2
1,0 ptE) I + ) 1,0 p(s)1°as
0
(4.37) < c{1o%p(031% + 10 a1 + ¥ Vge) i®

t
D LR

2 2
St L+ D, 08 o+ Ay Jas),

t
i tpour (e) 02 + [ ax 0 N ucare? + 1 0 S2 (s) as
0

t
(4.38) <c{i®,u 12 + [ X g% + 10*e0 2
0

+ txofer® + e, 02+ i las)

wherxe

X (0 o - ujpx Yax ,

3

ol';p

Nt ™

and here the summation is not taken for k.

Proof. Compute the integral

€ n e
JREE 200 - % 6, o+ dat - tho axas - 0.
Q (4 174 i

©




After integration by parts, we have

JREE 21502 4 23 I + | [ p,ipplaxas
a 23 9 e Al P S S

'ftf-zvxoxo,,. Py P P R 5

0 3

L2 1,23 .,,3. _,0_ =3 .
Pa2XoPx ox M (zxoxo,xiu * %“xj)(“ ij £ - puxj)dx + Azd' ¢

Since the support of on is contained in ', we can make use of (4.2) and congequently

Schwarz inequality gives (4.37), k = t. The other cases k = 2,3, are obtained
similarly. To prove (4.38), compute the integral
2 P 0o_ 0 2 4.4 i
[ [ xg = (oe)n(” - £7) + X (Du'ID(L” = £7)dxds = 0
0 Q P

Integration by parts gives

P t ot -

1250

;‘{xo foel *x:IDulzdx’ + [ nguln ul? +x°(u+u)|ou |2axas
) o 0

*y
- 2 i 1 j
‘{ ‘{ xopz(buxi)De . 2%5',‘11,2(0\: )08 |
1 2.4 4 .
+ 2&,5,“‘9,(% Jop — xof “xjx - 2%5 t u jdx + Ads ,

which implies (4.38), k = 1 after using Schwartz inequality. The cases k = 2,3 are

obtained similarly.

Next let us establigh the estimates near the boundary. To do that we choose a finite

number of bounded open sets {0 ):_1 in 2° such that

N
v 0,dam,
=1 3

and in each set 0j we choose local coordinates (¥,9,r) as follows;

-24=




(1) the boundary O, N 3 is the image of smooth functions y'l = y‘(#, ¢) satisfying

3
(ex., take the laocal geodesic polar coordinate)
(4.39) lyyl = 1, y;yt- 0, Iy, >8>0,

where § is some positive constant independent of Jj = 1,...,N.

(ii) any x in Oj is represented by
(4.40) ' ot = kv, 4,00 = mbon, 0 ¢ ylone
where n"(#. ¢) represents the external unit normal vector at the point of the boundary
coordinated (V,¢). Here and in what follows we omit the suffix 3§ for simplicity. Let
us define the unit vectors .:' and e; by o: - y" and o; - y:/Iy .I. Then Prenet-

Serret's formula gives that there exist smooth functions (a,B8,v,a',8',7') of (¥, ¢

satisfying

i 0 -y -a . i
Py 1
W e, - Y 0 -8 .,

n a 8 0 n i
, . 1 0 -y -o o i
— - ] - Rt
T ., Y 0 8 .,
a' g 0 n

An elementary calculation shows that the Jacobian J of the transforsatin (4.40) is given
by
(4.41) J= |uv x x.l = ly‘l + (aly’l + B')r + (a B - sa')rz .

By (4.41) we can see the transformation (4.40) is regular choosing r small if needed.

Therefore the functions (0.0.r)‘ {x) make sense and is calculated as

1
-1 =1 et + el
*"1 3 (x.x x ) = 5 (Aey + Be)) ,
-1 =1 (cot + pat
(4.42) ."1 K ("r x "0’1 5 (Cey + Doz) .
r = 1 {x, %Xx.) =n
x, J T g i’

where A-Iy’|+ﬂ't, B=~ra', C=-fr, D=1+ @ and J =AD - BC > 0. Hence j

(4.42) implies




A
}
4

3 0= — (Ae + ne )9

x, v*-(c. +Do)3’+n3.

Thus in each 0j we can rewrite the equations {(3.4) } {mg 1n the local coordinates

(V,9,r) as follows:

o _4dp, g 144 i i, 4 14, _ 0
L at ((Ae +Be2 u‘,+ (Ce1 +Dez)u.+ Jnur) £,

i_ .4 ¥ 2, .24 i 2, 2 4 24
L ut+32 ((A +B)u**+ 2(AC+BD)\:“+ (c"+D )u”#aun) +

+ first order terms of u and 0

1 aed 4 pody (it b'dp 1 (cad + paly (Lt B dp
+ 3 (Aey + Be,)( : dt+p19)*+J(Ce1+De2)( = dt+p1o).+

+,,1(u_v_se+p1 ), + d B 0 i
] ]

where we note that J2 = (ac + BD)2 -~ (a2 + B2)(c? + D?). Let us denote the tangential

derivatives by 3 = (3*,3 ) as before and let )8(1 € j € N) be any fixed cut-off

)

function in c; (0,). Estimating the integral for k = 1,2,3

o

\4
/] xi L a%ma*al - €% x;(akui)ak(l.i - t1) 7 agdwaras = o
0 ’

in the similar way as in lemmas 4.5 and 4.9, we can get

Lemma 4.10. For any positive € and k = 1,2,3, it holds that

ja (p,u)(e)1? + j lxjoa us)1? + "Sak—e (s) 1%as

t
< <:(|,(ja"(p,u)(o)l2 + f eIDpl:_1 + (1 + € Yieu, 0 lid

2

0.2
AL SR F L I ia Id.a) '

3.k
/2

- [ -

j,k‘*‘ Q 3
In order to estimate the normal derivatives we make use of the equation

where A (3kp)3k(£ - ujpx )Jdx, and here the summation is not taken for k.

ar(x.° -£% =0 ana nlx! - £!) = 0 which have the form
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P s ]

( ),+2{(Ae + Be )u*+(Ce +De)u°+dn1u1

+ first order terms of u = f: ’

idi oy 2 2, i i 2, id 244
(4.43) nTug + S {(a° + B°)n uey * 2(AC + BD)u“+ c® + 0% wget Intu

J

+ first order terms of u and 6

- -

L] .
st dey g w it RO
? at’r 1'r ?

Eliminating niu:r from (4.43), we get

2p + ' (dp SR S S I 2 2, 44 14
oy (dt)z + P1Dr nu, + Jz {(a® + B")n uw’+ 2(AC + BD)n “00
2 2, 44 i 1.4
(4.44) + (¢ + D")n See " Jlae, + B‘z)“w - J(Ce + De )u } +

+ firat order terms of u and & + nf +—_—L£ .

©

k.L 2.k Lcdp 2 3
1€ we apply 23] (k + £=0,1,2) to (4.44), multiply it by )G3"3/(32) ana x’a"axpx
and integrate them respectively in the similar way as in lemmas 4.6 and 4.9, we can have

Lemma 4.11. For k + & = 0,%,2 it holds that

"“o(t)l +f 1x,2 Bu‘o(s)l + 13 a""‘( )(s)l as

X3
k+1.8 2 k.t 02 i
< (c{le(O)lHla- j 137 3 pul” + 433 u 1" 4 ;
v
2
+ m(u,e)lkﬂ T lku‘” AL L+ "j,k,z""} '

where

o [ 2eaRatt 2Ry . KRt Skt !
Bt ‘szj(aat ( c) - v p)aa pax ,

and here the summation is not taken for k and £.
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Evidently the statement of

Last we have to get a lemma corresponding to lemma 4.7.

lesma 4.7, k + £ = 0 holds also for the case of exterior domains, if we add the term

1bul on the right hand side of the inequality, (cf. lemma 4.3). Next operating xjak,

we have

k = $,2 to Stokes equation (4.6) with {(4.17) and u' =0,
i

- k 1 k 0 k cd - i
Blxyatu), = X2t - %3 G2 + ""j,xiak“ ,

i

- x i k k 1 - i
-u(xja u )"zxz + p1(xj3 p)xi - -xja u, - pzx‘,akbx1 + p1xj'x13kp - "xj,xlx,'ak“

(4.45)

-

ket L HT L xja (_B) + * xjakf

0
xy

4

- k i
"xj.xla “"z + xj

ol
<°|

k
du =0
xj ‘30

Thus we can apply lemma 4.3 to (4.45) and consequently we have

Lemma 4.12. For 2L = 0,1,2, it holds that

LAC YR cliut, + 28 %, 11, + In(u,8)1} ,

2""’\xl
atc 1+2 1+2

Ip + 1D

and for k= 1,2, L+ k=1,2, it holds that

Dzuak 1+zakp|

ul + lij

x ap 0
<
c““tlhl + Ixja dt"lﬂ. + If "l+k+£+ '“k+z+ IDplk”._‘ + ID(u, 9 'k+l}

Combining the above lemmas 4.1-4.4 and 4.9-4.12 in the similar way as in (i)-{(xv) for
the half space, we can get the exactly same inequality (4.35) and the same lemma 4.8 if
only replacing

b i
Ia | + 18, I
k=0 X kegeo Xe¥

2
»yuuunZn'nI{Z + 1 B 1} .
3=t k=2 ! ketmo JeKked

Thus the proof of Theorem 1.1 is completed.
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